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ABSTRACT
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biguity functions can be derived.
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A REVIEW OF NARROWBAND AMBIGUITY FUNCTIONS

INTRODUCTION

The narrowband ambiguity function was introduced by Woodward (1) in 1953. Its
properties have been extensively explored and used to study range and velocity resolu-
tion of radar and sonar targets by Woodward (1) and others (2-41). The wideband am-
biguity function is of more recent origin and has not yet been as .ully developed. Refer-ences to bothi functions are scattered through the literature, in ",i.'-1P.ty varying notations.

This report reviews the derivations and properties of the narrowband function a&;d some
of its generalizations, using a consistent notation. A companion report ("A Review of
Wideband Ambiguity Functions,") is concerned with the wideband function and the rela-
tionship between the two functions.

These reports originated as a set of notes for a Branch Seminar and have been re-
vised for more widespread distribution. The intent was to elaborate on and explain
Woodward's (1) Chapter 7 and then to discuss some of the subsequent work. To facilitate
reference to Woodward, the initial sections follow his work closely. Notational changes
were necessary for consistency in the sequel, Details of some of the developments have
been relegated to the appendices.

RESOLUTION AND AMBIGUITY

R•ange Ambiguity

Let a signal transmitted at time t be represented by the real part of the analytict
signal Y( t . We consider first the problem of range resolution of point targets, where
range is determined by the known velocity of propagation and the measured delay in the
signal echo. We assume no attenuation. To achieve maximum resolution, we would like
the echo (t - r) to differ as much as possible from Y(t). Using a mean-square cri-
terion, we would like t

)IV t (t W(t - T)l t (1)

to be as large as possible, except, of course, near 0. That is, we wish to maximize

f [40(t) T( t- r)] [,*(t) - V*(t - r")) dt

- (t 2 dt + j,'I(t-7)12  
dt - fW(t)V* It 'r) dt -- f '(t--r) V*(t) dt

2E - 2 t [I Y( t)V* (t - r) C~tj

where 1i'4(1t)1 dt I•V(t- 1)!j dt E, the total energy of the analytic signal or twice
the total energy of the real signal. Equivalently, we wish to minimizeI�IA complex signal is said to be analytic if its imaginary part is the Hilbert transform of its real

part: im [v (t)) O I { '•[ tf).
THere and in the sequel integration is over the entire space of the appropriate dimension, i.. forF all single integrals, unless otherwise stated.

U1
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2 D. A. SWICK

A '! f V(t) y*(t - -r) dt) (2)

except near o o. Let

T V(t) = uCt) exp(iwt) 
(3)

Then

T*s(t - r) = u*( t -- r) exp r-iw( t- 7))

and Eq. (2) becomes

R't [exp(ia-) fu(t) u*(t- 1-) dt] (4)

which oscillates with -.

The requirement is that IR(-)I be as small as possible, where
iA

R(f) ý fu(t)u*(t- r) dt (5)

is the complex autocorrelation function, and the symbol • means "is equal by definition
to." Sincet

Yt f u (t -r) f" [ t - -) exp (-21yift ) dt =ex/p (-277i f')U( f),

Parseval's theorem gives us from Eq. (5)

I(L) = Iu(f)12 exp (27,Pr) di = •f•[IU(f)1 2] (6)

Furthermore, 1(O) = flu(t)l2 
dt f IjUJf)I2 df z E.

As a measure of total signal ambiguity, Woodward (1) defines the time-resolution
constant

T 1 fjR()1 2 dr = flU(f)I4 df (7)
E2 E

where the last equality again uses Parseval's theorem.

Ambiguity in Rtange and Velocity

If the effect of moving targets is assumed to be adequately approximated by a simple
A• shift in frequency, we can define in an analogous fashion in terms of the frequency shift a

"frequency autocorrelation function"

I(O) - fU()U*(f-) df (8)
S.flu(t)12 exp(-21,i®t) dt = tt®[l,(t)12] ,(9)

¶In general, fx([t(x)] s (Y) symbolizes the Fourier transform gY) f(x) p -2.ixy) dx.
The inverse transform will be symbolized by f,- [a ([ ) 9 (x) =y ) (Y) exp (2,,i xy) dy.

__ "
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since Yf [U(f-0)] exp(27ri(t)u(t).

Without loss of generality we can let E = 1, and by analogy with Eq. (7) define the
frequency resolution constant

F, f,(€0)2 d4, f!u(t)14 dt (10)

where the second form comes from Eq. (9), using Parseval's theorem.

If the targets are at different ranges and are moving with different radial velocities,
we need a combined time and frequency correlation function (two-dimensional correla-
tion function). For the time beiug we consider only the narrowband approximation:

The Doppler effect is approximated by a frequency shift 40, constant across the signal
bandwidth.

The echo of v(t) is thus given by V(t - r) exp [277i(t - -r)]. Again, We let V(t) =
u(t) exp(it) z u(t) exp(27iift). The function to be minimized is now, by analogy with
Eq. ()

SR'I [ex (2yriobr)f IF(t)'#*(t - 7-) exp (- 277i~i) dr]

z Rt{ (exp 2(f40)T1fL(t)u(t-7)exp(-27ri/@) dt]

We require the modulus of the combined time and frequency correlation function

(7'. ,)) u u(t) u*(t -•)exp (-217i<t) dt (1

to be as small as possible, except near Ix(0,0)I E I.

The ambiguity function (Woodward ambiguity function, narrowband ambiguity func-
tion, n-b autoambiguity function) is defined as

A(7-. (b) 170) 12  (2

Other definitions of the generalized autocorrelation function (GACF) which lead to
the same ambiguity fuiction appear in the literature. For example, let

X (". 4p) fI U( i r2) u*(t-T 2) exp(-277iAt) dt

u u(1)) u*(1i- Tr) zxp -217•( ji 11 r 2)) dq

so that

The present defiitjion, Eq. (I1), has some useful transfurmation properties which
will be discussed later.

The name of the ambiguity function stems from the fact that it does not uniquely de-
termine a wavefor e. Fur example, let the GACF of Eq. (11) be labled \,,TA) to dis-
ti ngui shlit fr o in\, . t, ,, t) , . , , 2.,,1l 1t) , . wh ere , it). Ambiguity is
apparent if we cousider the frequency- shifted and tomt-delayed waveform

2• . . .. . .. .... .. . .
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v(t) u(t-#)exp(2ni~t)

where 0 oand e0 o. Then

SOME PROPERTIES OF THE GENERALIZED AUTOCORRELATION
FUNCTION AND THE WOODWARD AMBIGUITY FUNCTION

f(T,0) Z fu(t)u*(t r) dt z R(r) (13)

)c (0,40) z= fju(t)j'exp(-21ri~t) dt m x((D) (14)

yX(o.0) z flu(t)12 dt = E (15)

Theorem I

The GACF as an integral in the frequency domain is given as

X(T,4b) = jU*(1) U(f+o)exp(277 fr) df . (16)

The proof of theorems I through 4 will be found in Appendix A.

Theorem 2

Thb combined time-frequency resolution constant is given as

ffIx(7-.•)[•2 d4-d® 10 (17)

"The effective 'area of ambiguity' in the time-frequency domain is independent of the
transmitted waveform and is equal to unity." This theorem is called the "Radar Uncer-
tainty Principle" by Siebert (3). It is one of the most important properties of the narrow-
bard ambiguity function and will be discussed further after some examples have been
comidered.

Theorem 3

IX(,r,4)2 -< X2(o.o) = . (18)

Theorem 4 (Siebert's theorem (4))

The ambiguity function is Its own two-dimensional Fourier transform:

SffX(T.@)j2 exp [-27i (fr-Itýý did0 = Ix~t.f)i" (1n)

Theorem 2 can be obtaired frum Eq. (19) with t o0.

P
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( ,- -- u(t)u*(t +T) ep(27i4At) dt Iu( -,r) u*(,q)exp[27riO(l- r)] dyi.l

= exp ( 27i0)7-) x (T.) i

((20)

Relationship to Matched Filter

Consider a filter v atchcd to a real transmitted signal u ( t ); the Impulse responseis h (t) - u (T- t ). Let the input to this filter be the time-delayed and frequency-shifted

waveform 
x(t) z U(t fTr ) exp[-2?7iA (t+Tr)].

Then the output is y( t) - x( t) .h( t) - f x(a) h(t - a) da

y (t) f fu (a + )cxp [-271i¢(d( + -)] u (T - t + ) da

u- 'u()u( r + T- t)exp(=2qif) d/3

Y(T) x(T,0)

Thus, the GACF is the output of a filter matched to the trznmitted signal in re-
sponse to an echo with constant time delay and constant frequency shift (narrowband ap-
proximation to Doppler effect).

Convolution Theorems

Theorem 5I
If two functions are convolved in the time (frequency) domain, their generalized

autocorrelatlon functions are convolved in the time (frequency) coordinate.

Proof of frequency convolution case

Let u(t) v(t) w(t). Then U(f) - v(f) ,W(f)

X'('r) IU*(f) U(f +)exp(27iPr) df

fffV*(W)W*(f- 1 1 ) V(v) W(f+ 0- + ) exp (2rifr) dpcdhdf

!ff V*(p) V(") W%*(7) W0(7 + - v + 0) exp [27ri (q + It )7r] dqdpdv'

ff'*0 ( r)X.T-1- 11 + 4t exp (2rip-r) dlids,

f f V *(It) V (4 + )exp (27ripr) X.(-r 0 - ) dii dý

0 -

______ ___ _ _ 4_D__V
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where indicates convolution with respect to . The proof of the time convolution case
is similar. The operation of these two theorems is noncommutatlve (31).

Uniqueness Theorem

Theorem 6

The function u ( t ) is uniquely determtned to within a multiplicative constant of unit
magnitude almost everywhere (a.e.) by its generalized autocorrelatlon function.

Proof

X,(-r,O) d = ff u(t)u*(t -r)exp(-2wi/t) dtdr

-= f u(t)exp(-217ibt) fu*(q) dqdt = U(0) .*(O)

Therefore, if x,,(. .0) = x.,.4), v(0)V*(o) = U(¢)U*(O) and hence if V*(O) - 0,
V(O) = cu(¢), where c = V*(0)/v*(O). Since two functions having the same Fourier
transform are equal a.e., we have v(t) z cu ( t), a.e., and

X.(•'.0) = x,(r, zf• : cu(c) c*u*(t - ) exp(-27Tiz t) dt = ICl
2 

Xu(7'.O .

so that cI 1.

Complex Energy Density Function

Rihaczek (41) has recently defined a complex energy density funccion which may be
obtained as the Fourier trp-sform of the GACF.

Consider a real signal represented by Rt [u( t)], where u (t) is an analytic signal,
and let

f Iu(t)12 dt = f IU(f)12 df = E

where E is twice the total energy ol the real signal.

Then Iu (t)1 2 represents power, or "energy density waveform," and IU (f)1 2 is the
energy density spectrum. If the autocorrelation function of u(t) is given by Eq. (5), then
from Eq. (6), or by the Wiener-Khintchine theorem, the spectral density is

1(f) = y.j(R(.r)] =IU(f)12  (21)

Similarly, the autocorrelation function in the frequency domain, Eq. (8), transforms
into the "waveform density." From Eq. (9) we have

i[K(O)) u(t)12  (22)

By analogy, the two-dimensional Fourier transform of the GACF is
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.P (r$) jjf f (7*,() exp[I-277i (f-r - (t)] dr &V

- fff u(',i) u*(,i - r)exp(-277i¢q)exp [ 2inz(fr- t)) dridrdO

U 0(t) f u*(t - -) exp(-277iFbr) d-r

u u(t ) exp (-277ift) fu*(•) exp(277i f<) dC

u(t) U*(f) exp(-2nift) (23)

Thus, just as the autocorrelation functions in time and in frequency each are the
Fourier transforms of an energy density function, as shown in Eq. (21) and Eq. (22), we
may define the complex energy density function in time and frequency from Eq. (23) as

C ( t, f) u(t)V(f)exp(-27ift) (24)

Then the energy density spectrum is

fe(t.[) dt = JU(f)1
2

the energy density waveform is

f C(tjf) df = lu(t)12

and

If F(tf) dtdf = E

the total energy of the analytic signal.

The energy of the analytic signal within a "cell" of area 7"B centered at (to, fo) in the
time-frequency plane is given by

t, +T,:2 f,+s I

ETI f f t,f) dfdt
t, -T '2 /,-a 2

* EXAMPLES OF NARROWBAND AMBIGUITY FUNCTIONS

Single Gaussian Pulse

We consider first an example discussed by Woodward (1). Only slightly more general
than Woodward's simplest pulse is the single Gaussian pulse

u(t) k cxp(--)t 2
) o d 0 (25)

where the parameter a determines the width of the pulse, and k (2a 7•1) 1 so thai

I I1 ((t) dt I

POE.

j t-

A.
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It is shown in Appendix B that

cXp (-a 1r
2 /2 7,- 2/2a -• ) (26)

Thus,

ixw(r,•)I 2  exp [-(aT2 + V202/a)] (27)

and contours of constant ambiguity are given by the eUipse ar
2 

+ 7242/a = constant, as
shown in Fig. 1.

SHORT PULSI to>1 v)It
I ~LONG K~LSE (c0<v1

Fig. 1 - Curves of constant ambiguity:Ig W,

Note that

IR (r)I2  - IX,.(-r,O)1 2  
exp(-a72 )

and

]gu(•)!:Z~~~ •-I '( ,): xp (-77 2 d2/a')

so that in this case the ambiguity function is factorable: I)X(Q-")D 2 I''R(-)I 1 (0)1'.
This result is not general. When it holds we have from Eqs. (7), (10), and (17) that
TF 1.

Single Rectangular Pulse

Let u(t) (2a)-1 2 , 1tI, < a, zero elsewhere. In Woodward's (1) notation,
u(t) r (2a)- rect(t/2a). Then
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'(T,•J) •tt,.[u( t) .,*( t 1)] *t.f,(2a)-I rect [(2t- T)/2(2a- ijrj ))1

1(1- 1!1/2a)l sine [(2.a- !•WP)0 exp(-y7iT0) 17 l 2a i

0 ,-I • 2a, (28)

and

(I1- 'rI/2.a)
2  
siiic

2 
[(2--- 7 7?)), '- .2 (29)

zero elsewhere, where sink- x sin -.x ix.

Modulated Uniform Pulse Train

To facilitate Woodward's next example, the Gaussian pulse train, we consider a train
of (Dirac) delta functions. Eschewing questions of rigor and using Woodwaxd's notation,
we let

_•W(t) z •(t -nT) •repT7(t .t

Then

W(f) -- ccAnb,/r i 1

If the pulse repetition period T is unity, the train of delta functions Fourier trans-
forms into itself.

The GACF of a train of delta functions is shown in Appendix C to be

S..(b.) :•-I,.E'& (, -nT) 5 (4- •fi (30)

This "bed of nails" (5, 22, 33) is shown in Fig. 2, drawn as if the delta functions had finite
amplitude.

Let a general pulse train be represented by

Sv(t) rePTu(t) u(t) ,•.(t-nT) u(t).w(t) . (31)

S By Theorem 5 we have

(0 - %,a) . (T, nT- a) d

� T�T-. • -

T.- (32)
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AD INFINITUM

Fig. 2 - "Bed of Nails" generalized
autocorrelation funtion

If the pulse train of Eq. (31) is, in turn, modulated by an envelope function x(t), the
resulting waveform and its spectrum may be r-epresented by

y(t) = x(t)v(t) and Y(t) = X(f).V(f)

Using Theorem 5 and Eq. (32) it follows that

+1_ f X -(.''v) xu(7r - nT'.'v) ( _ M di

T n.T T

Thus, the ambiguity function is

1 x,(,)2 j7 x. 0 X. - • X_(7--CT , -?X. r'.4 - )x*(',r- nT., )

We now impose the additional conditions that the GACF of a single pulse vanishes
for I T > T and that the GACF of the envelope function vanislies for 1¢[ - 1 'T. With
these conditions we can write

X'u(T-,iTA¢) X'(T -nT,4P) --7 •(r-•T¢ [ • (33)

and

where S,n. is the Kronecker delta. Hence,
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Y( 2 1

T2 X. (7',)-V x(~n~l (34)

For art ctangularpulse, u(t) (2a)-1 2 rect (t '20), with a rectangular envelope,
()- (2b)-

1 
2 rect Ct/2b), Eq. (28) shows that tie conditions Eq. (33) are approximately

satisfied if 2a < T 2b. We then have

(1 1- 1 [ /2b)•

I(i I=i/ )2  Z {((- Ir-nTI/2a)2

Sinc 2 [(2a- 17 -nTj m/T) sjae 2 [(21,- ITI)(0-mIT)]}

Gaussian Pulse Train

If u (t) is a single short Gaussian pulse, we have from Eq. (26)

exp - [(1r-nTT? + (-r-mT)2] - 0 - w4$((- n)T}

1) (n-.l)Of~)T ek. !- [c-r - liT) 2 + (T -mT)2] _ 1.42}

If n - m, this equation reduces to Ixu( - nT, )12 in agreement with the conditions
in Eq. (33). However, for n z m, the product does not exactly vanish; there is some
overlap of the Gaussian tails. We will have a close approximation if

exp {.j(7-flT)3 + Tr-nT)2} <<. Vinz n, Vi

This requirement is satisfied if aT
2  0, as must be the case for a short Gaussian

pulse - moder.*te T requires large a.

• ~Similarly, if x ( t ) is a broad Gaussian envelope, x (t )-k' ,.xp (-hi€ 1), we have again
from Eq. (26) with b replacing a:

2

""(-1)''I") T .xp { h 2 [( . + 4)
2b Tj

If n, n, this reduces to

If m z n, we require 1 )T2 0, 0. Thus, for T moderate, we must have h very small,
consistent with the broad Gaussian envelope.

Thus, if 1) T . the ambiguity function for a train of narrow Gaussian pulses
with a broad envelope, obtained from Eqs. (34) and (27), is
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- exp [a(r-nfT)2 - b,- 2 (- (35)

For each n and m, the contours of constant ambiguity are ellipses. Centers of
ellipses are spaced at intervals of T in r and iT In i, and the overall ambiguity de-
creases exponentially in 7- and V.

A sketch of this ambiguity function is given in Fig. 19 on page 122 of Ref. 1.

Single Gaussian Pulse with Linear Frequency Modulation

If v(t) = u(t) exp (ibtO) for any u(t), the "instantaneous frequency" isI1
f 4 I d (bt 2 ) bt/7,2 7 dt

Thus, [i varies linearly with time. The GACF is

x ,(-r.¢D) = f Y( t) v*(t - r) exp (- 2 77i t) dt

= cup (-ib'r2) fu(t) u*(t - ") exP (--27ri (O-b-r/7) t) dt

"n ep ( ibT'2) Xu(r•, IV- bT /7).

Hence,

From Eq. (36) we see that

Iv<rbr/ = I)12 •

Teat is, the ambiguity along a line 0 = br/,7, whose slope is equal to the rate of change
of the instantaneous frequency, is equal to the ambiguity along the r axis in the absenceof frequency modulation.

For the single Gaussian pulse with linear FM, we have from Eqs. (27) and (36)

S'r,) - exp [ar2 - 41 ( -

Curves of constant ambiguity are again ellipses,

b2 + 2) - ý-Trb TO + -2 i2 constant (37)

The eccentricity of these constant ambiguity ellipses depends on both a and b, and
their axes are rotated with respect to the -r,, axes by an angle e, where

tan 20 27,b/[72 
- (a 2 

+ b2)] (38)

as is shown in Appendix D.
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Note that in this case

LIR ( 0) 1' exp -(+ ±)r]eXp (_7? 2 4 2 /a) (.r.V)j12

The Ideal Ambiguity Function and its Approximation

We saw in Eq. (27) and in Fig. 1 that the parameter a suffices to reduce the ambl-
guity in either the T direction or the (D direction but not in both. Equation (37) shows that
with two parameters it is possible to reduce the ambiguity both along the r axis and the
0' axis but not simultaneously along a line 4' = -r ta . One would surmise that with ad-
ditional parameters we might do better. Ideally, we would like the ambiguity function to
be a delta function at the origin, but this we cannot achieve. We might hope to obtain as
an approximation a narrow spike in both directions as shown in Fig. 3.

I

Fig. 3 - Approximation to
ideal ambiguity function

T

.1 Equation (35) and Woodward's Fig. 19 show that with a train of pulses we can reduce
the ambiguity in all directions in the vicinity of the origin to an arbitrarily low level.
We do this, however, at the expense of having additional peaks appear elsewhere. This
is a consequence of Theorem 2; if we reduce the ambiguity in one place it must pop up
elsewhere so that the total area of the ambiguity surface remains constant.

B :The closest to the ideal ambiguity function we can expect is the so-called "thumb-
A ' tack" ambiguity fwiction. This consists of a narrow spike surrounded by a uniformly low

pedestal, with most of the volume lying under the pedestal. We do not know of any wave-
form which produces the "thumbtack" ambiguity function. For many applications, an
ambiguity free region near the origin, as obtainable with a train of pulses, is sufficient.

Pseudo-Random SequencesL i We recall that the ambiguity function along the 7 axis is the square of the autocor-
relation function of the signal (see Eq. (13)). Thus, to approximate the "thumbtack" am-
biguity function, a necessary but not sufficient condition is that the autocorrelation function



14 D. A. SWICK

of the signal be small near'the origin. One practical signal known to have such an auto-
., correlation function is the signal generated by maximum length pseudo-randorn sequences.

Such a sequence, (&j ), may be specified by its recursion formula

ai c~a, i = 0,1,2, (39)

where cj = 0 or 1 and £ indicates modulo 2 summation and by the initial conditions given
by the values of

d-a , *-nl +I a_ I

A new sequence formed by the modulo 2 addition of a maximal- length pseudo- random
sequence and a nontrivial shift of itself will be a shifted version of the original sequence.
That is, if

bi i 9 8 A ,T, %where T # 0 (mod 2' - 1)

j=i- -i.

then

tii-n
bi Cj (4 _j ( Dai @ ,i. T-j)

J-1

E cj bj_j

Thus, {bi) obeys the same recursion relation as (a 1 ). Since (a,} contains all
n-tuples (except the all zero n-tuple), these sequences are idential to within a phase
Shift.

This so-called "shift-and-add" property can be used to obtain the narrowband ambi-
guity function of signals generated by such sequences for time differences of 'r - k to,

where k is an integer and to is the shifting period of the generator.

The additive group of integers modulo 2 is isomorphic to the group consisting of -1
and 1 with multiplication as the group operation. If we let s ( t ) represent a signal ob-
tained from a pseudo-random sequence of -l's and l's, the "shift-and-add" property
becomes a "shift-and-multiply" property, as shown in Appendix E,

V
st)S( t- k to) t s- V to)

where k and k' are integers, Thus from Eq. (11)

7I
0A.
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x'(kt 0 .,4) - f s(jt)s (t-kt,)exp(-27i'Vt) dt

sf S(t-k't 0 )eXp(--2riVt) dt

- exp(-27uik'0t 0 )S(0)

Therefore,

IX(kto,42)1
2  S (S(4)12

That is, for T k t,, the narrowband ambiguity function of maximal-length pseudo-
random signals is proportional to the power spectrum and is independent of k.

GENERALIZATIONS OF NARROWBAND AMBIGUITY FUNCTIONS

Cross-Ambiguity Function

An extension of the concept of ambiguity functions to two waveforms was defined by
Stutt (7).

Let u,( t) and u,( t) be two complex waveforms. We define the generalized crosý
correlation function as

X Af 1 (t)u1 2 *(t- ,) ?exp(-27Ti't) dt (40)

/U2*(f) U,(f + ) exp(2-ifr) df (41)

and the cross-ambiguity function as

(42)j A 12 (r'®) i).. 2(7A).)1'(1

These functions may be useful when it is desired to identify one of many possible wave-
forms. Some, but not all, of the properties of the autoambiguity function apply to the
cross-ambiguity function, For example, by Parseval's theorem we have

" P) )~ . I), dr f I~ 1U1( t) u ( t - 7- )12 dt.

so that

f I IX 12,(r'b) 2 d4'dt - -u,(t)ij2  f u(t -r)i dTdt I

if the energy in both waveforms is normalized to unity. Furthermore,

X \ l 0. ) U L(.r) u (t -U r) rit , "

2I (
I.2Oq) tU ( ) zf ¢ I
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but

I1x2(o o)12 If u 1(t)u*(t) dt12

f lul(t)I2 dt f u2( t)1 2 dt

by the Cauchy-Schwarz inequality.

Therefore, if u'(t) ; ku 2(t), where k is a constant,

1)( o(0,o)l1 < :(43)

in contrast with Eq. (15). Also,

t'2 I= -r,(P)12 = If ul~t) U2(t- ) - exp(-2TicIt) dt

I f Iu,(t)J2 dtf lu*(t-")exp(-27rift)I2  
dt 1 (44)

It does not follow from this relationship that Ix12(_.4)12 .< Ix 2(O0o)12.

In fact, if u,(t) - u,(t -r•) exp (277it 0 t), ro, 40 x 0, then equality holds in Eq. (44):
X2( 70,00)12 = 1. If, in addition,

u 2 (t-r)exp(2i7r4Dt) ± ku 2(t)

then from Eq. (43),

IX12 (0,o )12 < I

so that in this case Ix 12(o0o)I < IX1(., 01) • In this case,

IX12(oo)l -- fu-(t )exp(27iriot)u*t (,tI= t Ix,)drt1200) 12

By proof similar to that for Theorem 4 it can be shown that the generalization be-
comes

If Ix'I(-'®)l exp[(-27ri(f'r-4t)) drd0 )ýI,(t. f))(2*2 (t.'f) (45)

In place of the symmetry relation, Eq. (20), we have

X1~' 2 (-T,$) = u,(t)u*2(t+1r)exp(2wri~t) d

exp(-2•i•i•r) " u 1(t -) u*(t) exp(27iit) dt

z exp (-2w7i4lt) XI(r•

Hence,

-= (46)

L1
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Convolution Theorems

Theorem 7

Let u1 (t) = v 1 (t). w(t), U2 (t) z v2 (t) *w 2(t). Then I

k12(7,(D) X, 1 v 2 r4) V r4

(v•(,) X (.r,4)• (47)
I1w2 , 12

The proof is similar to that of Th orem 5.

Similarly, if uJ(t) = v,(t) .l( t)and u 2 (t) v2 (t) w2 (t), then

X:u lU2 ( , T D x 2C,'

N~ O'a 7. ) *,2 ) (48

Invariance Relations for the Real and Imaginary Parts of Ambiguity
Functions of Analytic Waveforms (Ref. 7)

Let X,2(r0) C1• 2(•.) * q,(7-,o) be the generalized cross-correlation function of
analytic waveforms u l (t) and L1(t). Then

11 C, (7.4) drd$ r ff - 2( r.A) dr-d- 12, (49)

if u1(t) and u 2 (t) are both normalized.

Proof

F f f [C~22(-p) 2(-0td

Since

12 2 (1O 12 12i12

:1/2•+ 1 (X12 + x1) d-rd.

But

II
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ff r ,12 d 1ffff U 2 "(f) UV(f+4))(v)U( +4))

exp [-2yri (f +v) r) dfdvddrdO

(4 U ( f) Ul(f + 0) U2 (- f) Ul(- i+ (D) d fd4) 0,

Ince u2 (t) is analytic, so that

U2 (f) = O f < .

Sand
and 

U2 (-f) = O* f > 0

Simjlr ly,

ff X•(,r,0)d'rd$ z 0 I
SO ~ff C2(0 d'rdt - 1/2;

hence,

ff 1 2 (r,4)drd) = 1/2

Notice that the autoambiguity function is a special case of the cross-ambiguity func-
tion, so that in general the real and imaginary parts of the ambiguity function of analytic
signals contribute equally to the invariant volume under the ambiguity surface.

The Most General Ambiguity Function

Before considering other ambiguity functions, it is of interest to reformulate the
problem in complete generality. From this generalization we will rederive the prewious
results and then define an angular ambiguity function. The generalization is used in the
companion report to obtain a wideband ambiguity function.

Let s,(t) and &,( t) be functions, square integra! - on (-.w), representing signals
which we wish to resolve. Obviously, if s, and s2 arýt to be resolved at all, they must
differ in some respect. As in Eq. (1), we use a mean-square criterion to maximize their
difference. That is, we wish to maximize

d2 f 1s 1(t) -_ S2(t)I
2  

dt

= f S(t)I2 dt + f 132(t)1 2 dt - 2R-• [f s,(t)s*(t) dt] (50)

Equivalently (as in F-q.2), we can achieve maximum resolution by minimizing
Z or ,I or . where

2 t ()s*(t) dt (51)
F')2 l

C = mm m m• m
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X. 2 may be termed the "most general ambiguity function." It is too general to be
useful in itself; its only value lies in the fact that from it we can obtain less general but
more useful ambiguity functions. The argument and functional form of X, 1 2 depend,
of course, on the characteristics of sL and s, that are, in fact, distinguishable.

1. if S( t) u ( t) (which may be the low-frequency part of a high-frequency wave-
form 0(t) u(t) exp(it) but need not be so restricted) and if s2 (t) ý u(t -r), a time-
shifted version of the same waveform, we have

SX,~ X ,,(7,.0) = f u(t) u*(t -,r) dt = R(."),

the complex autocorrelation function, Eq. (5). In this case I> ,8 132 IR (_)1 2
, the range

ambiguity function.

2. If s,(t) = u(t) and if s 2 (t) z u(t) exp(2T7itt), a frequency-shifted version of the
same waveform, we have

I )S2 = x(O.0)= f Iu(t) 2 
exp(-27TiAPt) dt - K(0)

the frequency autocorrelation function, Eq. (8).

3. If s,(t) = u(t) and if s 2 (t) u(t -7) exp [27ia(t - r')), a time- and frequency-
shifted version of the same waveform, we have (neglecting exp (- 2tirpr)--"

X, 012 : 1",@ f u (t)u*(t-r-) exp(-27714)t) dt

as in Eq. (11).

4. If x 1(t) u,(t) and if s 2 (t) ) u 2 (et-) xp [271i0(t -- )], a time- and frequency-
shifted version of a different waveform, we have

X, (T,.-P) z f U 1 ( t)u*(t - r) exp(-2vzi~t) dt

as in Eq. (40).

Angular Ambiguity Function

The distinguishing features between s, and s, need not be temporal. By considera-

tion of spatial differences, Urkowitz et al. (13) define an angular ambiguity function.

We consider two plane waves from distant sources incident on a linear aperture.

Let x be the distance along the aperture from a reference point (Fig. 4) and let o, and
e 0 be the angles between the directions of arrival of the wavefronts and the normal to
the aperture. Let s (t) represent a signal transmitted with a propagation velocity t, as-
sumed constant. If the incide t waves are echoes from stationary targets at the same
range, then

k
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- - x

Fig. 4 - Wavefront geometry

t)S 1(tx 01) s st C i~~

and from Eq. (51)

X, (x,0 1 , 2 ) t x in 0,)( x sin 02 ) d

-f S(t) S*t (sin 0, sin 0.)]d

vf v (sin6j- sine2)/e, then =(~52 xv f s(t) s*(t+xv) dt -R£(xv), where R.(-) is

the complex au' dclrrelatioui function of the transmitted signal.

Urkowitz et al. define the angular ambiguity f~uiction J (v) as

j (") '_ f I I x)I12 R. (xv) dx .(52)

where I1(x) is the "illumination function" of the aperture. A detailed discussion ot the
illumination function and its spatial Fourier transform, the "space pattern" of the aper-
ture, is beyc-nd the scope of the present treatment.

If resolutIon in both azimuth arid elevation is considered, a two-dimensional illum~i-
nation function T(x. y) is required, and a two-dimensional angular ambiguity function is
defined. If I (x v) i, (x) 12(0'), the two- dimensional angular ambiguity function be-
comes the product of the individual ambiguity functions.

If the targete are at different ranges and are moving with different radial components
of velocity, a four-dimensional ambiguity function in azimuth, elevation, range, and "range
rate" (Doppler shift) is required. For narrowband signals, this four- dime nsional ambi-
guity function is separable into the product of the range-Doppler ambiguity function and
the azimuth- elevation ambiguity function. TjLhe same is true, in general, of a six-
dimensional formulation which includes angular velocity as well.

/I
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If the illumination function is complex, Eq. (52) cannot account for the effect of the
aperture phase function on angular resolution. To avoid this difficulty and to avoid de-
pendence 01 resolution on the orientation of a receiving array, Procopio et al. (15) replac(
Eq. (50) with the integrated squared difference criterion

S.... •~~~2 ) ~ s(.l€• 2t0, 1')2 sin a dadlbdt,

where

, , ) I(x,y) s1(t,x,y,O1 ,.O ) dxdy

S,2 ) f I (xy) S.txy('Y'02) dxdysi 't-2 .2) (D2•

are the signals received buy the entire array, and the angular orientation of the array is

S~~given by the co,•neso, Dp. An angular ambiguity function may now be defined as
Si x~a/•)l•,where

ff (tO ,f) 2(t,0 2 .. 2 ) sin 0 dOdOddt

where a - 0o - 0. and (- - 0 -

Additional flexibility (and complexity) is obtained by allowing the illuminating func-
tion I(x,, t) to be time varying.
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Appendix A

PROOFS OF THEOREMS 1 THROUGH 4

Theorem I

X(7,4b) =4 f u(t) u*(t -r) exp(-2774 t dt -

= fffU(v)U*(f)exp{2ri [ ft - f(t-r) - Ot]} dzdfdt

= ff U(v) U*(f) [,- ([+4)] ex-(277ifr) d,,df

= f U(f + ) *(f) exp( 217if7) df

using the well-known properties of the Dirac delta function 5 (b).

Theorem 2

X(7,[U) t ~~) U*( t -7))

Hence,

yot [c(7.,)] - u(t) u*(t -7')

and by Parseval's theorem,

.f 0(, ) 12 dO f¢ • t) 12 1 u (t- -r)12 dt.

Thus

T (Ir,4t.)12 d'dr s f lL(t)12  f ju(-r)12 d-rdt

Theorem 3

{I u(t)u*(t - i) exp(-277i'?t) dt;
2

f [u(t)12dt f u(t-7r)I2 
dt

by the Cauchy-Schwarz inequality.

Theorem 4 X

.II, , I',x(•.a'• ] (J \(7. xp2[-2ni 17 'lt ]J •rdd

II'
I
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ffffu~nu*ci,~xp(-2wi~bu*(Cu(C-,

x exP(27wi$C)exp [-277i(fTr-0t) d~d~d-rd0b

- SIu(Il)u*-t)u*()u(f-t)evxp[-2fif()l-C)]d)1dC
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GACF OF A SINGLE GAUSSIAN PULSE

u (t) =(2a/T)1,'4eXp (-&t2) ,a 5 0

X( 7..,b) =( ja/r) 1,
2 

feyp (-at2 - a (t -r) 2 -2ffAltj dt

From Woodward (1)) page 28, "pair 3,"1 we have Y t (exp (-77 t
2
)] eXp 7ujf 2). 7This Can

be shown as follows:

Jgj(excp(-'7t2 )] fexp(-7yt 2-277ift)dt

= expe.7Tf2)1 exp (-T:(t + d)2 dt

zexp(-n1 2 ) exp (-7t 2 
1,dt exp (-7Tf 2 )I Then

I t[exp(-2at 2 )) (?7/2a), 2 exp(7~f/a

by Woodward'Is "Rule 8,"1 and
!ftf~exp [-2a(t-,r/2) 23} (iv/2a)''12 exp [-72 f2,/2a - 21if'rl2)

by "Rule 6." Applying this result to Eq. (Bi) we have

-ý,rO exp(-ar 2 /2-w 2$j2 /2a-v7TA)r)

K

27
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b Appendix C

b GACF OF A TRAIN OF DELTA FUNCTIONS

X~cr,4P) fb(t -nT)5 (t -r-tnT) cxp(-277j'Pt) dt

a [ (n-rn) T- TeXP(-2'7Tin4)) L~ 5(T-rT) vXP(-27imP'ir )

kt Now consider the formal Fourier series expansion

S (lb-n-IT) E Cn xp- 277ir4JT).

TtienI
ý5 f ( ~ - n/T) exp(27rirfl4bT) dJ4 -I

f 1Texp 27Ti (n - mOT] d't

- C,,8,,.I~T - C./T

so that C,~ T, I'm. Hence,

Sexp(-27irnw4')= 7-1 ~a2'

and

28
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Appendix D

ROTATION OF AXES OF THE AMBIGUITY DIAGRAM OF A SINGLE
WIL GAUSSIAkN PULSE WITH LINEAR FREQUENCY MODULATION

Equation (37) will be in the standard form for an ellipse if we define new axes, r',
0' rotated by an angle o with respect to the 0, B axes, where

1ý = r' cos 0 - V sin 0

and

I: :r' sin 0 + 0' cos a

If this is substituted in Eq. (37), rewritten in the form A72 + rB- + C€2 = K, and if
the coefficient of 7'P' is required to vanish, we obtain tan 20 B/(A -C) from which
Eq. (38) follows.

29
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Appendix E

MULTIPLICATIVE PROPERTY OF PSEUDO-RANDOM SIGNALS

Theorem

Let s (t) represent a signal obtained from a maximal-length pseudo- random sequence
of -Is and 1s, of infinite duration. Let k be an integer, k ,i o (mod p), where p is the
period of the pseudo-random sequence, and let to be the shifting period of the generator
producing the signal. Then s(t) s(t-kt 0 ) - s(t - k' to), where k' is also an integer.

Proof

We may write

•~~ di) = , iit),

where (ai) is the pseudo-random sequenre, andt

S•1, (i1) to < t < ito
Aj(t) (El)

0, otherwise

Then

s (t-kto) = i • ^ (t-k t,) a • ks. (t) .

since

10 -k(i-) to = t-kto < ito {1, (i+k-1) to < t < (i+k) to

( 0 , otherwise 0 , otherwise

= Aijk(t) = Aj(t) , if j = i + k

Thus

S( t) s t -kto) 0 iaj-kAj( t)Ai(t) E

Now

tTbis notation is similar to that used on p. 18 of J. I.. Lawson and G. E. Uhlenbeck, "Threshold Sig-
nals," New York-.lcGraw 1l101,4950. I arm grateful to Dr. H. L. Saxton for calling my attention to it.

30
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8
iai-(k-ji) = a..k, , (EM)

where k' ij an integer by the "shift-and- multiply" property of pseudo-random sequences
of ls and - Isj

Using Eq. (El), we have

I=z, 1 t0( wi- )to < t < ita] n [(i-i) to < t < jt 0 ]
Ai~t)Aj~t ý0.otherwise

{'1, to[max (ij)- 1] <t <to min((ij)

0 , otherwise

If i tjst productvanlshes unlesBs (j-1) t, t < it,; this means i- i< iij,

which can only bL satisfiedfor i = j. Similarly, if i ? j, Aj(t) A,(t) = 0unless(-1) t , < t < j to, for which we get i - 1 < i -E i, and again j :i

Thus, we can write Aj(t) Aj(t) = Aj(t)i j and from Eqs. (E2) and (E3),

s(t) s (t-kto) E E aj•kAj(t)Bhs
SJ
J i 

jlk A (t)

Ii
= (t-k'tg).

Q.E.D.

I!
Ii
I]

tSee. for exainple, C. McCoy, JT., "Pt'wur Spectrum Estlmates of Sampled Pseudo-Randoni Sequencce,"
NRL Relxrt 6673, p. 6X, Dec. 29, 1967; Thesis, The George Washington Uiniversity, Feb. 22, 196;8.
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